Cavity cooling of internal molecular motion.
نویسندگان
چکیده
We predict that it is possible to cool rotational, vibrational, and translational degrees of freedom of molecules by coupling a molecular dipole transition to an optical cavity. The dynamics is numerically simulated for a realistic set of experimental parameters using OH molecules. The results show that the translational motion is cooled to a few muK and the internal state is prepared in one of the two ground states of the two decoupled rotational ladders in a few seconds. Shorter cooling times are expected for molecules with larger polarizability.
منابع مشابه
Investigation of Brownian Motion of CuO-Water Nanofluid in a Porous Cavity with Internal Heat Generation by Using of LTNE Model
In this paper, the effect of the Brownian term in natural convection of CuO-Water nanofluid inside a partially filled porous cavity, with internal heat generation has been studied. It is assumed that the viscosity and thermal conductivity of nanofluid consists of a static part and a Brownian part of which is a function of temperature and the volume fraction of nanofluid. Because of internal hea...
متن کاملCavity Assisted Nondestructive Laser Cooling of Atomic Qubits
We analyze two configurations for laser cooling of neutral atoms whose internal states store qubits. The atoms are trapped in an optical lattice which is placed inside a cavity. We show that the coupling of the atoms to the damped cavity mode can provide a mechanism which leads to cooling of the motion without destroying the quantum information. Cavity Assisted Nondestructive Laser Cooling of A...
متن کاملInvestigation of handmade ferrofluids' motion in a ventilated cavity using computational fluid dynamics
In this research, some more applicable ferrofluids are produced and their mechanical specifications are measured, experimentally. Also, their treatments in the ventilated cavity geometry are assessed numerically. The magnetite nanoparticles are produced by a chemical combination of Fe2+ and Fe3+ with NH3. In order to solve the nanoparticles in the new mediums, a...
متن کاملInvestigation of handmade ferrofluids' motion in a ventilated cavity using computational fluid dynamics
In this research, some more applicable ferrofluids are produced and their mechanical specifications are measured, experimentally. Also, their treatments in the ventilated cavity geometry are assessed numerically. The magnetite nanoparticles are produced by a chemical combination of Fe2+ and Fe3+ with NH3. In order to solve the nanoparticles in the new mediums, a...
متن کاملTime-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment.
We use nonadiabatic mixed quantum/classical molecular dynamics to simulate recent time-resolved photoelectron spectroscopy (TRPES) experiments on the hydrated electron, and compare the results for both a cavity and a noncavity simulation model to experiment. We find that cavity-model hydrated electrons show an "adiabatic" relaxation mechanism, with ground-state cooling that is fast on the time ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 99 7 شماره
صفحات -
تاریخ انتشار 2007